Inorg. Chem. 2004, 43, 4558–4560

Dicopper–Dioxygen Complex Supported by Asymmetric Pentapyridine **Dinucleating Ligand**

Yoshimitsu Tachi,[†] Kazuki Aita,[†] Shinichi Teramae,[‡] Fumito Tani,[§] Yoshinori Naruta,[§] Shunichi Fukuzumi,[‡] and Shinobu Itoh*,[†]

Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan, Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Agency, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan, and Institute for Materials Chemistry and Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Received April 12, 2004

A dicopper(I) complex supported by a novel asymmetric pentapyridine dinucleating ligand, consisting of tetradentate and tridentate metal-binding sites, has been synthesized and characterized. The dicopper(I) complex reacted with molecular oxygen at a low temperature to give an unprecedented μ -peroxo dicopper(II) complex presumably having a μ - η^1 : η^2 binding mode, the spectroscopic features and the reactivity of which have been explored in detail.

Active oxygen species generated by the reaction of copper-(I) complexes and O₂ have attracted a great deal of attention as reactive intermediates of the oxidation and oxygenation reactions catalyzed by copper complexes and copper enzymes.^{1–3} Copper(I) complexes supported by *tetradentate* ligands generally provide (trans-u-1,2-peroxo)dicopper(II) complex A,^{4–8} whereas copper(I) complexes with *tridentate*

- [‡] Osaka University.
- § Kyushu University.
- (1) Itoh, S. In Comprehensive Coordination Chemistry II; Que, L., Jr., Tolman, W. B., Eds.; Elsevier: Amsterdam, 2004; Vol. 8, pp 369-393.
- (2) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004,104, 1013-1045.
- (3) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076.
- (4) Jacobson, R. R.; Tyeklar, Z.; Farooq, A.; Karlin, K. D.; Liu, S.; Zubieta, J. J. Am. Chem. Soc. 1988, 110, 3690-3692.
- (5) Komiyama, K.; Furutachi, H.; Nagatomo, S.; Hashimoto, A.; Hayashi, H.; Fujinami, S.; Suzuki, M.; Kitagawa, T. Bull. Chem. Soc. Jpn. 2004, 77. 59-72.
- (6) Bol, J. E.; Driessen, W. L.; Ho, R. Y. N.; Maase, B.; Que, L., Jr.; Reedijk, K. Angew. Chem., Int. Ed. 1997, 36, 998-1000
- Schindler, S. Eur. J. Inorg. Chem. 2000, 2311-2326.
- (8) The structure of the active oxygen intermediate is largely altered by steric effects of the supporting ligands: (a) Hayashi, H.; Fujinami, S.; Nagatomo, S.; Ogo, S.; Suzuki, M.; Uehara, A.; Watanabe, Y.; Kitagawa, T. J. Am. Chem. Soc. 2000, 122, 2124-2125. (b) Hayashi, H.; Uozumi, K.; Fujinami, S.; Nagatomo, S.; Shiren, K.; Furutachi, H.; Suzuki, M.; Uehara, A.; Kitagawa, T. Chem. Lett. 2002, 416-417

4558 Inorganic Chemistry, Vol. 43, No. 15, 2004

ligands tend to give $(\mu - \eta^2: \eta^2 - \text{peroxo})$ dicopper(II) complex **B** (Chart 1).^{9–15} The side-on peroxo dicopper(II) complex **B** is well-established to be a common intermediate of the dinuclear copper proteins such as hemocyanin, tyrosinase, and catechol oxidase.1

Bis[2-(2-pyridyl)ethyl]amine tridentate ligands (Pye2, Chart 2) have played very important roles in copperdioxygen chemistry.^{2,3,13,14} Karlin and co-workers have developed a series of dinucleating ligands involving the Pye2 tridentate metal binding units to accomplish reversible

- (9) Kitajima, N.; Fujisawa, K.; Moro-oka, Y. J. Am. Chem. Soc. 1989, 111, 8975-8976.
- (10) Lam, B. M. T.; Halfen, J. A.; Young, V. G., Jr.; Hagadorn, J. R.; Holland, P. L.; Lledós, A.; Cucurull-Sánchez, L.; Novoa, J. J.; Alvarez, S.; Tolman, W. B. *Inorg. Chem.* 2000, *39*, 4059–4072.
 Kodera, M.; Katayama, K.; Tachi, Y.; Kano, K.; Hirota, S.; Fujinami,
- S.; Suzuki, M. J. Am. Chem. Soc. 1999, 121, 11006-11007.
- (12) Kodera, M.; Kajita, Y.; Tachi, Y.; Katayama, K.; Kano, K.; Hirota, S.; Fujinami, S.; Suzuki, M. Angew. Chem., Int. Ed. 2004, 43, 334-337.
- (13) Karlin, K. D.: Kaderli, S.: Zuberbühler, A. D. Acc. Chem. Res. 1997. 30, 139-147.
- (14) Itoh, S.; Fukuzumi, S. Bull. Chem. Soc. Jpn. 2002, 75, 2081-2095.
- (15) Depending on the ligands and reaction conditions (especially solvents and counteranions), O-O bond homolysis of the peroxo complex takes place to give bis(µ-oxo)dicopper(III) complexes: Que, L., Jr.; Tolman, W. B. Angew. Chem., Int. Ed. 2002, 41, 1114-1137.

10.1021/ic049524g CCC: \$27.50 © 2004 American Chemical Society Published on Web 06/24/2004

^{*} To whom correspondence should be addressed. E-mail: shinobu@ sci.osaka-cu.ac.jp

Osaka City University.

Figure 1. ORTEP diagram of dicopper(I) complex Cu¹₂L showing 50% probability thermal ellipsoids. Hydrogen atoms and counteranions are omitted for clarity.

dioxygen binding (functional model of hemocyanin) and aromatic ligand hydroxylation reaction by the side-on peroxo complex \mathbf{B} .^{3,13} We have also demonstrated the aliphatic ligand hydroxylation reaction as well as the oxygenation of phenols (model reaction of tyrosinase) by using a simple mononuclear copper(I) complex of Pye2 as the starting material.¹⁴

As our continuing efforts in exploring the effects of ligands on Cu_2/O_2 chemistry, we herein developed a new asymmetric pentapyridine ligand L by connecting the metal-binding unit (Pye2) directly to the 2- and 5-positions of pyridine via a methylene linker as shown in Chart 2.¹⁶ The compound is designed to act as a dinucleating ligand, where the left-hand of the compound serves as a N₄-tetradentate metal-binding site and the right-hand acts as a N₃-tridentate ligand (see Chart 2). Thus, the copper complex prepared by using this ligand is expected to provide an asymmetric dicopper unit that should afford a novel Cu_2/O_2 complex upon oxygenation. Because most of the dinuclear metalloenzymes in nature have asymmetric metal binding sites,¹⁷ it is highly desired to study the dioxygen reactivity of such asymmetrically coordinated dinuclear transition-metal complexes in the model system.¹⁸

Treatment of ligand L with 2 equiv of $[Cu^{I}(CH_{3}CN)_{4}](PF_{6})$ in acetonitrile under anaerobic conditions (in a glovebox, $[O_{2}] < 1$ ppm) gave the corresponding dicopper(I) complex $[Cu^{I}_{2}(L)](PF_{6})_{2}$ ($Cu^{I}_{2}L$).¹⁶ Single crystals of $Cu^{I}_{2}L$ suitable for X-ray crystallographic analysis were obtained by recrystallization using a liquid/liquid diffusion method between acetone and Et₂O. In Figure 1 is shown the crystal structure of the cationic part of $Cu^{I}_{2}L$.¹⁹ One of the copper(I) ions, Cu(1), exhibits a four-coordinate distorted trigonal pyramidal geometry involving three pyridine nitrogen atoms, N(1), N(3), and N(4), in the trigonal basal plane and the amine

Figure 2. Cyclic voltammogram of $[Cu^{I}_{2}(L)](PF_{6})_{2}$ (2.0 mM) in acetone containing 0.1 M TBAPF₆; scan rate = 20 mV/s.

nitrogen atom, N(2), as the axial ligand, whereas another copper(I) ion, Cu(2), exhibits a three-coordinate T-shaped trigonal planar geometry containing the amine nitrogen atom, N(5), and two pyridine nitrogen atoms, N(6) and N(7). Thus, the two copper(I) ions in $Cu_2^{1}L$ exhibit different coordination geometries as we expected.

Figure 2 shows the cyclic voltammogram of $Cu_2^I L$ in acetone under anaerobic conditions (Ar).¹⁶ The complex exhibits two reversible redox peaks at 0.13 and 0.46 V vs SCE. The lower and higher redox peaks are assigned to the redox reactions of copper centers at the *tridentate* (N₃) and *tetradentate* (N₄) metal binding sites, respectively, on the basis of the $E_{1/2}$ values of mononuclear copper(I) complexes supported by related tridentate and tetradentate ligands.²⁰ Existence of the two redox couples clearly demonstrates that the asymmetric coordination geometry of $Cu_2^I L$ is maintained in solution.

Dicopper(I) complex Cu^I₂L readily reacted with dioxygen in a 2:1 ratio (determined by manometry) in acetone at a low temperature (-94 °C), resulting in a color change of the solution from pale yellow to dark brown. A typical spectral change for the oxygenation reaction of Cu^I₂L is shown in Figure 3, where a strong absorption band is observed at 483 nm ($\epsilon = 4300 \text{ M}^{-1} \text{ cm}^{-1}$).²¹ The resonance Raman spectra of the brown species in acetone- d_6 taken at -90 °C with 413.1 nm excitation are given in the inset of Figure 3. A characteristic Raman band at 828 cm⁻¹ with ¹⁶O₂ is exhibited that shifted to 784 cm⁻¹ upon ¹⁸O₂ substitution. Thus, the observed isotope shift of $[\nu({}^{16}O_2) - \nu({}^{18}O_2)]$ is 44 cm⁻¹, which is in good agreement with the expected shift for the diatomic harmonic oscillator, $[\nu({}^{16}\text{O}_2) - \nu({}^{18}\text{O}_2)] =$ 47 cm⁻¹, of a peroxo ligand. Moreover, the brown solution was ESR-silent, indicating the diamagnetism of the oxygenated intermediate.

⁽¹⁶⁾ The experimental details for the syntheses and the measurements are described in the Supporting Information.

⁽¹⁷⁾ Handbook on Metalloproteins; Bertini, I., Sigel, A., Sigel, H., Eds.; Marcel Dekker: New York, 2001.

⁽¹⁸⁾ For dicopper-dioxygen complexes with asymmetric coordination environments, see: (a) Nasir, M. S.; Karlin, K. D.; McGowty, D.; Zubieta, J. J. Am. Chem. Soc. 1991, 113, 698-700. (b) Mahroof-Tahir, M.; Karlin, K. D. J. Am. Chem. Soc. 1992, 114, 7599-7601. (c) Murthy, N. N.; Mahroof-Tahir, M.; Karlin, K. D. Inorg. Chem. 2001, 40, 628-635. (d) Zhang, C. X.; Liang, H.-C.; Kim, E.; Gan, Q.-F.; Tyeklar, Z.: Lam, K.-C.; Rheingold, A. L.; Kaderli, S.; Zuberbühler, A. D.; Karlin, K. D. Chem. Commun. 2001, 631-632. (e) Aboelella, N. W.; Lewis, E. A.; Reynolds, A. M.; Brennessel, W. W.; Cramer, C. J.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 10660-10661. (f) Teramae, S.; Osako, T.; Nagatomo, S.; Kitagawa, T.; Fukuzumi, S.; Itoh, S. J. Inorg. Biochem. 2004, 98, 746-757.

⁽¹⁹⁾ Details of the crystallographic data of Cu¹₂L are provided in the Supporting Information as a CIF file.

⁽²⁰⁾ Osako, T.; Ohkubo, K.; Taki, M.; Tachi, Y.; Fukuzumi, S.; Itoh, S. *Inorg. Chem.* 2001, 40, 6604–6609. Details of the electrochemical analyses of Cu^I₂L and the related dicopper(I) complexes will be reported elsewhere.

⁽²¹⁾ The time course of the oxygenation reaction was followed by monitoring the absorption change at 483 nm. It became apparent that the reaction was biphasic; $k_{obs(1)} = 4.7 \times 10^{-3} \text{ s}^{-1}$ and $k_{obs(2)} = 2.8 \times 10^{-3} \text{ s}^{-1}$. The biphasic kinetics indicates that the peroxo intermediate is formed via at least two steps, although the mechanistic details are not known at present.

Figure 3. Spectral change observed upon introduction of O₂ gas into an acetone solution of $Cu_2^{I}L$ (4.5 × 10⁻⁴ M) at -94 °C. Interval = 100 s. Inset: Resonance Raman spectra of the intermediate generated in the reaction of $Cu_2^{I}L$ with ${}^{16}O_2$ (top) and ${}^{18}O_2$ (middle) and their difference spectrum (bottom) obtained with an excitation wavelength of 413.1 nm in acetone- d_6 at -90 °C. Note: The peaks indicated by (s) are due to the acetone- d_6 .

The Cu-to-O₂ stoichiometry (2:1) and the ESR silence, as well as the resonance Raman features, clearly demonstrate that the oxygenated intermediate is a (μ -peroxo)dicopper(II) species. The UV-vis spectrum of the intermediate ($\lambda_{max} =$ 483 nm, $\epsilon = 4300 \text{ M}^{-1} \text{ cm}^{-1}$) shown in Figure 3 is, however, significantly different from that of the well-characterized (μ -peroxo)dicopper(II) complexes such as (*trans*- μ -1,2peroxo)dicopper(II) complex **A** [435 nm (1700 M⁻¹ cm⁻¹), 524 (11300), 615 (5800), 1035 (180)]⁴ and (μ - η^2 : η^2 -peroxo)dicopper(II) complex **B** [349 (21000), 551 (790)],⁹ suggesting that the peroxo intermediate obtained in this study has a different binding mode of the peroxo ligand as described below.

As stated above, the oxygenation reaction of the copper-(I) complexes supported by tetradentate ligands provides the end-on μ - η^1 : η^1 -peroxo dicopper(II) complex **A** (Chart 1), whereas the copper(I) complexes with tridentate ligands Pye2 give the side-on μ - η^2 : η^2 -peroxo dicopper(II) complex **B**. Thus, the μ -peroxo dicopper(II) complex supported by ligand L, which contains both the tetradentate and tridentate metalbinding sites, should have a μ - η^1 : η^2 binding mode **C** as illustrated in Scheme 1. In fact, the resonance Raman feature of the oxygenated intermediate is fairly close to that of the structurally characterized (μ - η^1 : η^2 -peroxo)dicobalt(III) complex; $\nu(^{16}O_2) = 839 \text{ cm}^{-1} [\Delta\nu(^{16}O^{-18}O) = 43 \text{ cm}^{-1}].^{22}$ Although (μ - η^1 : η^2 -peroxo) dinuclear transition metal complexes have been reported for Co^{III}-Co^{III}.^2 Fe^{III}-Cu^{II}.^2 V^V-V^V.^24 Rh^I-Rh^I.^25 and Pd^{II}-Pd^{II}.^26 the peroxo complex

obtained in this study is the first example of $Cu^{II}-Cu^{II}$ complex containing the μ - η^1 : η^2 -binding mode.

Despite our great efforts, we could not isolate the $(\mu - \eta^1)$: η^2 -peroxo)dicopper(II) complex C for further structural characterization. Nonetheless, the reactivity of C toward some external substrates has been examined in acetone at a low temperature (-80 °C). The peroxo complex C immediately decomposed with evolving H_2O_2 (80%) when a protic acid such as CH₃SO₃H (10 equiv) was added to the solution. This seems to indicate that the peroxo intermediate C exhibits a nucleophilic character similar to that of the endon peroxo complex A.27,28 On the other hand, the reactivity of C toward Ph₃P, PhSMe, and ArOH is rather similar to that of the side-on peroxo complex **B** to give the corresponding oxidation products Ph₃P=O (78%), Ph(Me)S=O (88%), and the C-C coupling dimer of phenol (82%), respectively, demonstrating an electrophilic nature of \mathbb{C} .^{27,28} Thus, it is apparent that the peroxo complex C exhibits the reactivities of both the end-on and side-on peroxo complexes.²⁷ Mechanistic details of the oxidation reactions are now under investigation.

Acknowledgment. This work was financially supported in part by a Grant-in-Aid for Scientific Research on Priority Area (No. 11228206), Grants-in-Aid for Scientific Research (Nos. 13480189 and 15350105), and a Grant-in-Aid for Young Scientists (B), (No. 14740368) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Experimental details of the syntheses and characterizations of the ligand L and the dicopper-(I) complex as well as product analyses of the reactions between peroxo intermediate **C** and the external substrates. Crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC049524G

- (25) Bennett, M. J.; Donaldson, P. B. Inorg. Chem. 1977, 16, 1585-1589.
- (26) Miyaji, T.; Kujime, M.; Hikichi, S.; Moro-oka, Y.; Akita, M. Inorg. Chem. 2002, 41, 5286–5295.

⁽²²⁾ Gavrilova, A. L.; Qin, C. J.; Sommer, R. D.; Rheingold, A. L.; Bosnich, B. J. Am. Chem. Soc. 2002, 124, 1714–1722.

⁽²³⁾ Chishiro, T.; Shimazaki, Y.; Tani, F.; Tachi, Y.; Naruta, Y.; Karasawa, S.; Hayami, S.; Maeda, Y. Angew. Chem., Int. Ed. 2003, 42, 2788– 2791.

⁽²⁴⁾ Sucha, V.; Sivak, M.; Tyrselova, J.; Marek, J. Polyhedron 1997, 16, 2837–2842.

⁽²⁷⁾ Paul, P. P.; Tyeklar, Z.; Jacobson, R. R.; Karlin, K. D. J. Am. Chem. Soc. 1991, 113, 5322–5332.

⁽²⁸⁾ It was reported that the $(\mu - \eta^2: \eta^2$ -peroxo)dicopper(II) complex **B** did not react with protic acids, whereas the oxidation reactions of Ph₃P and phenols did not proceed with the (*trans-µ*-1,2-peroxo)dicopper-(II) complex **A**.²⁷